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Is There a Need for New Cardiovascular  
Biomarkers?

Discovery of novel biomarkers and improvement of risk predic-
tion algorithms will be a key to fulfill the promise of personalized 
medicine. Although genuine personalized treatment is probably 
an unrealistic expectation within the budget constraints of cur-
rent health systems, a stratified medicine approach to identify 
individuals at high risk may help to allocate available resources 
most efficiently in a setting with a rising epidemic of cardiovas-
cular disease (CVD) fueled by obesity, hypertension, and dia-
betes mellitus and by an aging population. Besides, biomarkers 
may improve patient motivation; by facilitating risk communi-
cation and compliance to lifestyle changes and therapies.

The search for cardiovascular biomarkers dates back to the 
mid 1960s when creatine kinase and its cardiospecific isoform 
creatine kinase-MB were established as indicators of acute myo-
cardial damage.1 About a decade later, the Framingham Study 
pioneered the quest for long-term cardiovascular risk prediction. 
Framingham risk scores,2 as well as others, such as Prospective 
Cardiovascular Münster (PROCAM) study, Systemic Coronary 
Risk Evaluation (SCORE), and Reynolds,3 are widely accepted 
and implemented tools in clinical decision-making. These 
scores inform treatment decisions, but they leave ample room 

for improvement. Currently, the majority of cardiovascular risk 
is not explained by traditional risk factors. In fact, most events 
occur in patients with an average risk score who are erroneously 
deemed to be at intermediate or low risk because they have no 
or only 1 of the cardiovascular risk factors.4 In contrast, many 
high-risk individuals do not experience a cardiovascular event 
even in the long term.5 Thus, the renewed interest in biomarkers 
is warranted, and the recent advances in postgenomic technolo-
gies offer unprecedented opportunities for biomarker discovery.6

How Well Do Current Cardiovascular 
Risk Factors Predict Risk?
Up to now, biomarkers linked to systemic and vascular 
inflammation, oxidative stress, or vascular calcification received 
most of the attention. In the latest (2010) release of the American 
College of Cardiology Foundation/American Heart Association 
guidelines for cardiovascular risk assessment in asymptomatic 
individuals,3 a few of these biomarkers (C-reactive protein, 
hemoglobin A1C, urinary albumin excretion, and lipoprotein-
associated phospholipase A2) were given a class IIa or IIb 
recommendation for clinical use in particular subgroups. 
Others like natriuretic peptides7 or oxidized phospholipids on 
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Abstract—The postgenomic shift in paradigm from reductionism to systems-wide network inference has increased 
recognition that cardiovascular diseases are not simply determined by the genome but arise from an interaction and dynamic 
dysregulation of gene regulatory networks, proteins, and metabolic alterations. The advent of postgenomic technologies 
promises to interrogate these complex pathophysiological perturbations by applying concepts of systemic relationships 
to biomarker discovery. A multibiomarker panel consisting of biomarkers capturing different levels of information (eg, 
microRNAs to assess endothelial and platelet activation, molecular lipid species to profile metabolic status, and proteolytic 
degradation products to assess vascular integrity) could outperform inflammatory biomarkers without vascular specificity 
in their ability of predicting cardiovascular risk. As atherosclerosis develops over decades, different biomarkers may 
be required for different stages of disease. Thus far, there is no simple blood test to directly assess the health of blood 
vessels or identify vulnerable patients. We discuss strategies for biomarker discovery using post genomics technologies, 
with a particular focus on circulating microRNAs. The aim is to reveal distinctive cardiovascular phenotypes and identify 
biomarker signatures that complement the Framingham risk scores in clinical decision-making and in a stratified medicine 
approach for early preventive treatment of disease.  (Arterioscler Thromb Vasc Biol. 2013;33:206-214.)
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apoB-100–containing lipoproteins8,9 show promise and are 
currently being tested to establish their additive predictive value.

CVD is inherently so complex that a single biomarker is 
unlikely to capture the individual predisposition to develop CVD 
or herald its sequelae. Also, it is challenging to improve the estab-
lished cardiovascular risk scores by measuring new biomarkers 
and achieve meaningful incremental values over and above tra-
ditional risk factors. For example, C-reactive protein improves 
cardiovascular risk prediction in the general population, but its 
incremental predictive value is somehow limited because of its 
strong correlation with other risk factors, such as body mass 
index and smoking.10 Conventional risk scores already combine 
different levels of information (age, sex, family history, smoking 
status, hypercholesterolemia, hypertension, and diabetes melli-
tus) by relatively inexpensive measurements that can be read-
ily performed in the clinic. To recapitulate this multirisk factor 
strategy, advanced statistical and bioinformatics methods should 
be used to identify biomarker signatures that provide comple-
mentary information (ie, by determining the response of an indi-
vidual to a given burden of cardiovascular risk factors).

Clinical Use of Genetic Testing for 
Cardiovascular Risk Prediction?
Although heredity encompasses an important aspect in the 
development of CVD and genome-wide association studies 
have unraveled intriguing susceptibility loci, the advance in 
cardiovascular risk prediction offered by genetic markers is 
modest at best.11 As a trait with complex genetic causes, CVD 
does not follow readily predictable patterns of inheritance but 
results from variation within multiple genes and their interac-
tion with behavioral and environmental factors. Genome-wide 
association studies have identified single nucleotide polymor-
phisms (SNPs) for cardiovascular risk, but the risk alleles 
are common and have small effects (odds ratios of 1.1–1.3). 
Combining modest-risk genotypes, genes involved in lipid 
metabolism, endothelial function, and clotting did result in a 
significant 12% net reclassification improvement compared 
with Framingham risk score, by using 13 meta-analysis proven 
candidate gene SNPs and adding 7 genome-wide association 
SNPs.12 Nonetheless, the American College of Cardiology 
Foundation/American Heart Association guidelines3 opt for a 
thorough assessment of CVD family history but recommend 
against genetic testing for SNPs in CVD susceptibility genes. 
At present, it seems unlikely that genetic testing for cardio-
vascular risk will have a wider clinical use. The genotype may 
influence cardiovascular risk, but this risk is mediated through 
its impact on trait. Most genotypes will not predict risk over and 
above measures of cognate trait. Also, there is an urgent need to 
translate the results from genome-wide association studies into 
mechanistic insights. What is missing are those carved paths 
of linking SNPs to cell signal transduction and metabolism to 
promote our understanding of pathogenetic mechanisms.

Post Genomics Technologies: Beyond 
Individual Biomarkers

The assessment of individual biomarkers has provided much 
insight, but complimentary approaches are being pursued to 
advance CVD risk prediction:

1. �The development of multistage risk scores or targeted 
scores for patient subgroups diverging from the current 
strategy of “one prediction tool fits all.”

2. �The consideration of measures of preclinical disease sta-
tus similar to cancer medicine. Coronary artery calcium, 
carotid artery intima-media thickness,13 and plaques 
are assumed to reflect life-time exposure to known and 
unknown risk factors and their interaction with an indi-
vidual’s genetic background.

3. �To go beyond genomics and interrogate the transcrip-
tome, proteome, metabolome, and lipidome and move 
from solitary serum biomarkers, most of which are not 
specific to the vasculature, to biomarker signatures, and 
to biomarker networks.

The genetic specification of a human being, once assumed to be 
of almost limitless complexity, consists of just 20 000 protein-
coding genes. Only ≈1.5% of the human genome codes for pro-
teins. Yet, >80% of the human genome is actively transcribed.14 
These noncoding regions of the human genome have previ-
ously been termed junk DNA. It is now clear that biological 
complexity is determined not by the number of protein-coding 
genes (C. elegans has a similar number of protein-coding genes 
as humans, rice plants have twice as many), but by the regula-
tion of these gene products. This shift in perspective quickly 
led to the creation of postgenomic sciences: transcriptomics 
for RNAs, proteomics for proteins, and metabolomics for small 
molecules. The genetic make-up of an individual may predis-
pose to CVD but neither can it predict its onset nor progres-
sion. Biomarkers originating from postgenomic technologies 
are closer to the CVD phenotype than SNPs and provide infor-
mation on epigenetic regulation, cell activation, tissue repair, 
and metabolic processes within the vasculature that may not 
be captured by standard risk factors. Given the recent advances 
in assessment methods (postgenomics technologies) and bio-
statistics (methods capable of handling extensive amounts of 
data with high dimensionality and collinearity, network infer-
ence algorithms), this new phase in biomarker discovery and 
vascular risk prediction offers the realistic hope for improving 
patient stratification and clinical management.

Circulating MicroRNAs
MicroRNAs (miRNA) are short segments of RNA that are 
not translated into proteins, but function as posttranscriptional 
regulators of gene expression and have been implicated in 
CVD. Seminal studies by Mitchell et al15 have revealed the 
presence of endogenous miRNAs in the circulation that are not 
cell-associated. Unlike messenger RNAs, miRNAs are stable in 
blood. In the circulation, miRNAs are protected from RNAse 
activity by microvesicles16,17 (exosomes, microparticles, 
and apoptotic bodies), RNA-binding proteins (eg, Ago2 
complexes),18 or lipoproteins (low-density lipoproteins and 
high-density lipoprotein).19 Thus, besides their classical role as 
a delivery vehicle for cholesterol, lipoproteins may also act as 
a carrier or depot for endogenous miRNAs and facilitate their 
transport and delivery to recipient cells.19 The existence of a 
miRNA pool within the circulation is an exciting new aspect 
of current biology and attracting considerable attention.20 
miRNAs may offer distinct advantages over other biomarkers21:
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1. �Unlike messenger RNAs, miRNAs are stable in blood. 
Circulating cells are probably the major contributor to 
the extracellular miRNA pool. Acute organ damage can 
lead to an increase of tissue-specific miRNAs (eg, car-
diac miR-1 becomes detectable in the circulation after 
acute myocardial infarction [AMI]),22 but it is not a fore-
gone conclusion that changes in tissue miRNAs will give 
rise to a corresponding change in circulating levels.

2. �As nucleic acids, miRNAs can be both amplified and 
detected with high sensitivity and specificity. Unlike pro-
tein-based biomarkers that tend to be measured individu-
ally, real-time polymerase chain reaction methodology 
allows the multiplexing of several miRNAs in a single 
experiment.

3. �Because most circulating miRNAs are highly correlated, 
global patterns of expression should be studied by rep-
resenting miRNA data as coexpression networks. Apart 
from their relative levels, it is the interaction and con-
nectivity of a miRNA within the miRNA network that 
defines disease-specific signatures and helps to unravel 
cell-type–specific expression patterns.23 For many pro-
tein biomarkers, the cellular origin remains uncertain. 
For example, both endothelial cells as well as platelets 
secrete von Willebrand factor. Measuring its circulating 
levels does not reveal how much of von Willebrand fac-
tor is endothelial- or platelet-derived. The same limita-
tion applies to most cytokines and chemokines that are 
detected in the circulation.

miRNAs as Novel Biomarkers for 
Cardiovascular Risk Prediction
To identify changes in circulating miRNAs that might precede 
subsequent cardiovascular events, we measured miRNAs in the 
Bruneck study.24,25 This study stands out with its prospective 
design and a population cohort of 820 individuals. Most stud-
ies published on miRNAs to date are small case-control studies 
comparing patients with manifest disease and healthy controls 
(Table).24–43 Evidence based on case-control comparisons has to 
be interpreted with caution because miRNAs are measured after 
disease onset and a temporal relationship cannot be established 
(reverse causality). Also, there is a need to standardize normal-
ization procedures and introduce minimum requirements for 
statistical analysis.44 Prospective population-based studies com-
prise a wide range of individuals representative of the general 
community, and samples are taken before the onset of disease 
offering a better opportunity to identify miRNA signatures with 
specificity for CVD. Because it is currently unclear how cardio-
vascular risk factors impact on RNA biomarkers, our aim was to 
first assess the response of miRNAs to cardiovascular risk fac-
tors before identifying miRNA signatures of risk of AMI. The 
principal findings of these studies are as follows:21

1. �Among all cardiovascular risk factors tested (hypercho-
lesterolemia, type II diabetes mellitus, smoking, and 
hypertension), type II diabetes mellitus had the most pro-
nounced effect on circulating miRNA profiles.24

2. �A miRNA-based biomarker signature comprising just 
3 (miR-126, miR-223, and miR-197) of 19 miRNAs 
(Figure 1A) added information to an established standard, 
the Framingham Risk Score for Hard Coronary Heart 

Disease.25 The integrated discrimination improvement, 
Akaike information criterion, and net reclassification 
index were used to assess to what extent adding informa-
tion on miRNAs stratifies patients to risk categories that 
better reflected their disease outcome (Figure 1B).

3. �The associations for these miRNAs and outcome events 
(with an expected 1.5–2-fold increase in risk per 1 SD 
change) were stronger than for C-reactive protein and 
other risk factors (≈1.3-fold increase in risk per 1 SD 
unit). Adjustment for known cardiovascular risk factors 
had only marginal effects on the risk estimates obtained 
(values of hazard ratios were changing by <5%).25

4. �The population study was accompanied by an interven-
tion study in healthy individuals to determine their cel-
lular origin. On the basis of expression profiles after limb 
ischemia-reperfusion injury, miR-126, miR-197, and 
miR-223 were part of 1 cluster that also included miR-
21 and miR-24. All these miRNAs are highly expressed 
in platelets and platelet microparticles.25 This is, to our 
knowledge, the first time that the contribution of a spe-
cific cell type to circulating miRNAs has been defined by 
a controlled intervention.

The diagnostic and prognostic potential of circulating miR-
NAs requires confirmation and cross-validation in follow-up 
studies as well as independent cohorts. miRNA measurements 
before and after cardiovascular events during observation will 
be the ideal setting to define which miRNA pattern antedate 
the event and which develop as a response of disease mani-
festation (reverse causality). In addition, measurements are 
currently performed in plasma and serum. No study has as yet 
addressed the compartmentalization of circulating miRNAs in 
the context of cardiovascular risk prediction.

Cellular Origin of Circulating miRNAs 
Associated With Cardiovascular Risk
Atherothrombosis is a key event in AMI and constitutes an 
important mechanism for advanced but not early progres-
sion of atherosclerosis. Advanced stages of atherosclerosis 
do not rely on traditional risk factors and are not adequately 
captured by measurements of intima-media thickness. In the 
Bruneck study, we observed a stronger correlation of miR-
NAs with AMI rather than with surrogate measures of early 
atherosclerosis. This is in agreement with our finding in the 
interventional study that at least 2 of the 3 miRNAs (miR-223 
and miR-197) constituting the signature for AMI are platelet-
derived. Although miR-126 is highly enriched in endothelial 
cells, miR-126 is also present in platelet, albeit at much lower 
levels. Nonetheless, platelets are the second most abundant cell 
type in the circulation, and the shedding of platelet micropar-
ticles in plasma or serum is a major contributor to circulating 
miR-126 levels. At least in healthy volunteers, there is a good 
correlation between miR-126 plasma levels and platelet mic-
roparticles.25 By measuring additional miRNAs, such as miR-
223, that are abundant in platelets but show low expression 
in endothelial cells, one can refine the endothelial contribu-
tion to the total miR-126 content in the circulation (Figure 2).  
The present findings extend our previous observations in 
patients with diabetes mellitus and raise the possibility that 
the observed loss of several miRNAs, including miR-126, 
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Table.  Summary of Clinical Studies on miRNA Biomarkers

First Authorreference

Description of Study  
Population Study Size

No. of  
miRNAs  

Measured Normalization

Statistical Methods

Additional  
Correlations

Statistical 
Adjustment*

Methods Used 
to Account for 

Collinearity 
Between miRNAs

Assessment of  
Value in Risk  

Prediction

Prospective studies/general population

 � Zampetaki  
et al24

General population →  
DM2 over 10 years

80 vs 80, 19 
vs 19†

13 RNU6B, miR-454 ++ Network analysis … Impaired glucose 
tolerance

 � Zampetaki  
et al25

General population →  
AMI over 10 years

820 19 U6, Ct average ++ Network analysis, L1  
penalization, best  
subset (AIC)

C-index,  
NRI, IDI

Thigh cuff  
ischemia/ 
reperfusion

Prospective studies/patients with preexisting 
CVD

 � Widera  
et al26

ACS patients → all- 
cause mortality over  
6 months

444 6 Cel-miR-54 ++ … AUC hs-cTnT

  Eitel et al27 ACS patients →  
MACE over 6 months

216 1 Cel-miR-39 ++ Only 1 miRNA  
tested

… Cardiac MRI

Case-control studies/acute coronary syndromes  
(ACS)

  Ai et al28 AMI patients vs  
hospital controls

93 vs 66 2 U6 o … AUC cTnI, CK-MB

 � Wang  
et al29

AMI patients vs non- 
AMI patients vs  
healthy controls

33 vs 33 
vs 30

6 Cel-miR-39 o … AUC cTnT

 � D’Alessandra  
et al30

STEMI patients vs  
healthy controls

33 vs 17 6 miR-17-5p o … … …

  Adachi et al31 ACS vs HF vs  
controls

14 vs 15 
vs 10

1 Internal reference  
small RNA

o Only 1 miRNA  
tested

… …

  Cheng et al32 AMI vs controls 31 vs 20 1 ? + Only 1 miRNA  
tested

… CK-MB

 � Kuwabara  
et al33

ACS vs non-ACS  
patients

29 vs 42 2 ? o … AUC cTnT

 � Oerlemans  
et al34

ACS vs non-ACS  
patients

106 vs 226 5 RNU6 ++ … AUC hs-cTnT

  Long et al35 AMI vs healthy  
controls

17 vs 25 2 RNU6 o … AUC cTnI

  Devaux et al36 NSTEMI vs STEMI  
vs healthy  
controls

113 vs 397 
vs 87

2 3 Cel-miRNAs o … AUC, NRI CK-MB, cTnT,  
hs-cTnT

Case-control studies/coronary artery disease  
(CAD)

 � Fichtlscherer  
et al37

CAD patients vs  
healthy controls

67 vs 31 8 Cel-miR-39 o … … Baseline 
characteristics

  Gao et al38 Hyperlipidemic  
patients with and  
without CAD vs  
normolipidemic  
controls

255 vs 100 4 Cel-miR-39 ++ … … Total cholesterol,  
triglycerides, 
 LDL, HDL

  Sun et al39 CAD vs non-CAD  
patients

31 vs 36 1 miR-16 o Only 1 miRNA  
tested

… LDL

Case-control studies/heart failure

 � Tijsen AJ  
et al40

HF vs non HF vs  
healthy controls

30 vs 20 
vs 39

16 miR-1249 + … AUC BNP and ejection  
fraction

 � Goren  
et al41

HF patients vs  
controls

30 vs 30 186;4 
validated

Ct average o … AUC BNP

(Continued)
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miR-197, miR-223, miR-24 and miR-21, may reflect abnor-
mal platelet function in diabetic patients.24 Also, previous 
comparisons of circulating miRNAs between healthy volun-
teers and patients with CVD are likely to be confounded by 
medication, in particular antiplatelet therapy.

Mechanistic Links Between Circulating 
miRNAs and Cardiovascular Risk
To expand mechanistic insights between miRNAs and car
diovascular risk, further downstream analysis will include 
identifying putative protein targets for these miRNAs. The 3 
miRNAs implicated in cardiovascular risk have a mechanis-
tic underpinning in endothelial damage and platelet dysfunc-
tion. Currently, most studies rely on bioinformatic algorithms 
or transcript analysis for the identification of miRNA targets. 
These algorithms are based on an incomplete understanding of 
miRNA-mRNA seed pairing and evolutionary conservation of 
miRNAs. They typically predict hundreds to thousands of target 
genes for 1 miRNA, but with limited overlap, and even the most 
sensitive programs fail to identify known targets. Importantly, 
cell type context is not taken into consideration. A considerable 
proportion of miRNAs act as translational inhibitors, and many 
effects can only be observed at the protein level and not at the 
mRNA level. The use of proteomics methods will be essential 
for a more comprehensive understanding of miRNA-mediated 
regulation of gene expression.45 Similarly, metabolomic tech-
niques should be used to more thoroughly investigate the cor-
relation of miRNAs with clusters of metabolites.46

Lipidomics: Molecular Lipid Profiling 
for Cardiovascular Risk Prediction
Our knowledge about lipid biomarkers is mostly related to the 
classes of lipids rather than to single lipid species within the 

class. Biomarker studies investigating lipids focused on tri-
glycerides, high-density lipoprotein, low-density lipoproteins, 
cholesterol, and their derivatives, which have been shown to 
be involved in the pathophysiology and progression of the dis-
ease. With regard to cardiovascular risk prediction, no detailed 
comparison of individual lipid species across these different 
classes has been performed till date. Targeting specific lipid 
species that are most atherogenic could result in a better clas-
sification of cardiovascular risk than relying on conventional 
lipid measurements.47

We have recently used a shotgun lipidomics platform to pro-
vide a comparative lipidomics analysis of human endarterec-
tomy samples.48 Shotgun lipidomics as described by Han and 
Gross49 uses the different scan options of a triple-quadruple 
mass spectrometer to resolve isobaric lipids from different 
lipid subclasses and to detect even minor components, which 
would otherwise be masked by the presence of abundant lipid 
species. First a survey scan in positive and negative mode is 
acquired. Then, different product ion and neutral loss scans, 
characteristic for the different lipid classes, are used for the 
unambiguous identification of certain lipid classes by their 
product ions. This mass spectrometer-based intrasource sepa-
ration technique allows the identification and quantification of 
hundreds of individual lipid species in a complex biological 
sample. A liquid extraction-based surface sampling device was 
adapted for the analysis of plaque lipids directly from tissue 
sections. Both methods, liquid extraction surface analysis from 
tissue sections and conventional analysis by preparing Folch 
extracts, showed similar results in terms of detected signals 
and their intensity. In total, 150 lipid species from 9 different 
classes were identified, of which 24 were detected in endar-
terectomy specimens only but not in healthy arteries.48 For 

Table.  Continued

First Authorreference

Description of Study  
Population Study Size

No. of  
miRNAs  

Measured Normalization

Statistical Methods

Additional  
Correlations

Statistical 
Adjustment*

Methods Used 
to Account for 

Collinearity 
Between miRNAs

Assessment of  
Value in Risk  

Prediction

  Corsten et al42 AMI vs control patients  
with chest pain; acute  
viral myocarditis vs  
postmyocarditis vs  
controls; diastolic  
dysfunction vs  
hypertensive vs  
normotensive patients; 
acute HF vs controls

32 vs 36; 
14 vs 20 vs 
20; 39 vs 20 
vs 20; 34 
vs 33

9 3 Cel-miRNAs o … AUC BNP, creatine 
phosphokinase,  
cTnT, other 
clinical 
parameters

  Olivieri et al43 NSTEMI vs HF vs 
control

92 vs 81 
vs 99

6 miR-17, Cel-miR-39 o … AUC hs-cTnT

*Degree of adjustment: o indicates unadjusted; + minimally adjusted (typically adjusted for age and sex only); ++ additional adjustment for other cardiovascular risk 
factors; ?, not specified; and ..., not determined.

ACS indicates acute coronary syndromes; AIC, Akaike information criterion; AMI, acute myocardial infarction; AUC, area under the receiver operating characteristic 
curve; BNP, brain natriuretic peptide; CAD, coronary artery disease; Cel, C. elegans; cTnI, cardiac troponin I; cTnT, cardiac troponin T; hs-cTnT, high sensitivity 
cTnT; CK-MB, creatine kinase-MB; DM2, type 2 diabetes mellitus; EF, ejection fraction; HDL; high-density lipoproteins; HF, heart failure; IDI, integrated discrimination 
improvement; LDL, low-density lipoprotein; MACE, major adverse cardiovascular events (defined as a composite of death, reinfarction and new congestive heart failure); 
MRI, magnetic resonance imaging; NRI, net reclassification index; NSTEMI, non-ST elevation myocardial infarction; and STEMI, ST-elevation myocardial infarction.

†The study is based on a case-control comparison (n=80 per group) nested in the prospective Bruneck studies and includes a comparison of incident diabetes mellitus 
plus matched controls (n=19 per group).
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quantitation, authentic standards of the different lipid classes 
were spiked in Folch extracts. Several lipids were reduced in 
regions with evidence of rupture, and one could envisage that 
leakage of these plaque-related lipid products into the circula-
tion may constitute a better marker for plaque burden and vul-
nerability than total cholesterol levels and plasma lipoproteins. 
For example, Meikle et al50 used a target-focused analysis of 
plasma lipids to highlight the potential importance of measur-
ing distinct lipid species rather than lipid classes in patients 
with stable and unstable coronary artery disease.

Proteomics: Assessing Vascular Integrity 
by Monitoring Proteolysis
With regard to biomarker discovery, proteomics has overprom-
ised but underdelivered. The cardiovascular field is no excep-
tion.51 The plasma proteome is the most complex proteome of 

the human body. Current mass spectrometry techniques offer 
4 to 5 orders of magnitude of linear dynamic range. Yet, the 
dynamic range of biomarkers routinely measured in the clinics 
spans >10 orders of magnitude.52 Undersampling results in an 
overrepresentation of classical plasma proteins in proteomic 
data sets. Unlike tissue leakage products, such as cardiac tro-
ponins, changes in abundant plasma proteins frequently lack 
specificity for disease. An alternative strategy is the applica-
tion of proteomics directly to the diseased tissue, where the 
potential biomarkers are less dilute.53 Once biomarker candi-
dates have been identified, they can be quantified in the circu-
lation by conventional techniques that are less affected by the 
presence of high abundant plasma proteins.

Although others have focused on circulating cells to 
identify cardiovascular biomarkers,54,55 we have developed 
a proteomics method to analyze the composition of the 

A

B

Figure 1.  miRNA signature for incident myocardial 
infarction. A, λ1-penalized Cox regression analysis 
(least absolute shrinkage and selection operator 
method). The graph shows Cox regression 
coefficients of miRNAs (y axis) for different levels 
of penalization (the tuning parameter λ1 escalates 
>20). Variables withstanding shrinkage up to high 
λ1 values are those most relevant for disease 
prediction (reproduced from Ref. 25). B, All 
combinations of eligible miRNAs were computed 
and compared according to the models’ Akaike 
information criterion (AIC) that is based on the 
maximized log-likelihood and imposes a penalty 
for increasing the number of parameters in the 
model. Lower values of AIC indicate the preferred 
model which is the one with the fewest parameters 
still providing adequate fit (tradeoff between 
accuracy and complexity). The net reclassification 
improvement (NRI) formula was used to assess 
the extent to which adding information on miRNAs 
reassigns participants to risk categories that better 
reflect their CVD outcome (10-year risk categories 
<10%, 10%–20%, and >20%). Approximate 
95% CIs for the NRI were calculated by using the 
same variance terms as in the test of significance. 
Unlike the NRI, the calculation of the integrated 
discrimination improvement (IDI) does not rely on 
arbitrarily chosen cutoffs for 10-year risk categories. 
The combinations of all miRNAs were plotted 
based on their improvement of the AIC and the IDI 
to demonstrate that our preferred combinations of 
miRNAs (miR-126, miR-197, miR-223/miR-24) are 
the best among all miRNA combinations tested. 
Note that miR-223 and miR-24 are highly correlated 
and thus interchangeable.
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cardiovascular extracellular matrix.56,57 By using a decellu-
larization step, we overcome differences in cellular heteroge-
neity. Tissue heterogeneity is a major concern for any omics 
technology. Most clinical samples represent an endstage of 
human disease. In whole tissue, changes between controls and 
disease may reflect changes in the proportion of cell popula-
tions (ie, in inflammatory infiltration) rather than differential 
expression within a resident cell type. This problem is exag-
gerated with ever more sensitive techniques, such as next gen-
eration sequencing. Without information on cell composition, 
omics experiments may become an expensive substitution for 
histology. Besides, transcriptomics provides only a snapshot 
of gene expression at 1 time point; mRNAs are not informa-
tive about the events that occurred during the disease process 
or proteolytic activity. Instead, the extracellular matrix pro-
vides a read-out of vascular integrity and the inflicted damage 
during disease progression. These tissue-based experiments 
can be combined with an activity-based proteomics approach 
to identify novel protease targets and relate proteolytic activ-
ity ex vivo to the observed degradation products of extracellu-
lar matrix in vascular disease.58 Proteolytic activity is the key 
for plaque destabilization and aneurysm rupture. Numerous 
proteases, in particular matrix metalloproteinases, have been 
implicated. Yet, their targets in the vasculature are incom-
pletely understood. By identifying proteolytic cleavage prod-
ucts in vascular disease, proteomics could provide a valuable 
resource that may reveal novel biomarkers.59 These biomark-
ers can then either be detected in the circulation or in urine, 
where proteolytic degradation products tend to accumlate.60

Biomarker Validation
Independent of the molecular entity of the biomarker, vali-
dation should adhere with rigor to the respective scientific 
statement by Hlatky et al61 endorsed by the American Heart 
Association. This includes the proof of an independent and 
robust association in adequately sized prospective population 
studies, stringent replication, testing of an incremental pre-
dictive value and of clinical use involving analyses on model 

calibration, risk discrimination, and risk reclassification. Tests 
commonly applied in this context are the c-statistics/index, the 
net reclassification index based on clinically relevant catego-
ries of risk,62 continuous net reclassification index,63 prospec-
tive net reclassification index,63 and integrated discrimination 
improvement.62 On top of biomarker discovery and validation, 
optimal timing and frequency of risk assessment as well as 
the best-fitting prediction period deserve adequate attention. 
Ascertainment of short-term CVD risk and of an unstable 
plaque phenotype, using imaging, blood, and urine biomark-
ers, is as yet an unmet goal with high clinical priority. Finally, 
the best new biomarkers and respective risk score extensions 
should be directly compared in randomized trials for cost-
effectiveness and efficacy beyond current practice.61

A major drawback for biomarker studies using postgen-
omic technologies is the lack of standardization (ie, different 
RNAs are used for normalization of circulating miRNAs), and 
there are no search algorithms for unambiguous metabolite 
identifcation by mass spectrometry. Also, conventional sta-
tistical tests are not suitable for highly correlated variables 
such as miRNAs or metabolites. As postgenomic technologies 
advance, it is paramount to establish minimum standards for 
data analysis. Much can be learned from the tools and meth-
ods applied to genetics and genomics, but there is also a need 
for the development and application of new methods and tools 
specific to postgenomic technologies.

Conclusions
Over the last decade, innovative methods opened new possi-
bilities for harnessing the potential of postgenomic technolo-
gies to study CVD processes in clinical samples. Postgenomic 
technologies have the distinct advantage that read-outs at the 
transcriptome, proteome, and metabolome level and are closer 
to the phenotype of complex traits such as CVD, with contrib-
uting factors ranging from genes to environment. The aim is the 
integration of different levels of information to better charac-
terize the complexity underlying cardiovascular and metabolic 
diseases with the goal of illuminating biology and discovering 

Figure 2.  Endothelial and platelet con-
tribution to miR-126 levels. MiR-126 is 
more abundant in endothelial cells than 
in platelets. The opposite is the case 
for miR-223. In healthy volunteers, we 
observed a coordinated increase of 
miR-126 and miR-223 after ischemia/
reperfusion injury by thigh cuff inflation, 
suggesting a common platelet origin. This 
association is highlighted by computa-
tional analysis using the temporal cluster-
ing by an affinity propagation algorithm 
based on average miRNA expression at 
baseline and over time (10 min, 1 h, 5 h, 
2 d, 7 d). Ct indicates cycle threshold; 
PMBCs, peripheral blood mononuclear 
cells; PLT, platelets; and EC, endothelial 
cells.
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clinical biomarkers that may help to stratify patients. For exam-
ple, changes in circulating miRNAs could be related to lipi-
domic as well as proteomic signatures to find new regulatory 
mechanisms of CVD. If successful, postgenomic technologies 
may propel multimarker strategies in the clinics. A comprehen-
sive noninvasive biosignature, comprising a panel of biomark-
ers, may serve as a potential tool in the early diagnosis and 
prognostication of cardiovascular risk and prioritize individuals 
at risk for therapeutic interventions. Nonetheless, “prediction is 
very difficult, especially about the future” (Nils Bohr).
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